Part:BBa_K3038002:Experience
Contents
Applications of BBa_K3038002
Manipulations
PCR amplification
Following the design of the synthetic gene, It is amplified by PCR thanks to the design of primers upstream and downstream of the sequence. After amplification of the synthetic gene, the sample is purified, the amplicons are digested with restriction enzymes EcoRI and PstI. Similarly for the cloning vector pSB1A3 according to the protocol described above. The insert (TesA) is then ligated into the plasmid.
The PCR product, as well as the digestion products, are deposited on 0.8 % agarose gel. In well 2, the TesA tagged with 6 his in C-ter amplified by PCR. The most intense band observed corresponds to the size expected for TesA around 900 pb. Another band, this time very weak, is visible below 400 pb. This band may be due to a specific pairing of the primers.
Electrophoresis gel photography following the deposit of TesA PCR products.
The migration was performed at 100 volts for 30 minutes in TAE 1X. The marker used during the migration is NEB 1 kb Plus DNA Ladder
Enzymatic digestion
The products of digestion are also loaded on the gel. In well 2 we see the purified PCR TesA product. There is little DNA loss here, which is encouraging. Wells 3 and 4 respectively show the digestion of the plasmid and the TesA gene by the restriction enzymes EcoRI and PstI. This is to form cohesive ends between the two. We obtain bands at the expected sizes, about 2200 pb for the plasmid and 900 pb for the synthetic gene TesA.
Electrophoresis photography following loads on agarose gel 0.8% of enzymatic digestion products. The migration was performed at 100 volts for 30 minutes in TAE 1X. The marker used during the migration is the NEB 1 kb Plus Ladder (left in the figure). Lane 1 corresponds to the marker, lane 2 to the purified PCR product, lane 3 to the digested pSB1A3 plasmid and lane 4 to the digested TesA synthetic gene.
However it is important to note that agarose gel migration does not verify the effectiveness of digestion. Indeed, since the restriction sites are at the end of the sequences, only a few base pairs have been removed on either side. The resolution of an agarose gel does not make it possible to observe the size of the fragments so precisely. This step makes it possible to ensure that we did not have a loss of DNA during experiments.
Ligation in pSB1A3
Design of TesA/pSB1A3 with Geneious software.
This map shows the pBAD promoter in amount of the coding sequence of the TesA protein. Also present the 6-His tag. Finally, in the plasmid is present and ampicillin resistance cassette.
Cloning into E. coli Thermocompetent cells JM109
The thermocompetent E. coli JM109 bacteria are then transformed and clones are obtained. Different volumes of transformed bacteria are spread on Petri dish with selective medium. The number of clones obtained is consistent with the proportion of bacteria spread on the Petri dishes.
Clones on a selective LB medium (+ ampicillin 100 µg/mL) following the transformation of E. coli thermocompetent cells with the TesA/pSB1A3 ligation.
PCR colony screening
After bacterial transformation, colony PCR is performed with the forward primer of the TesA gene and a reverse primer of the plasmid. 24 clones are tested. The PCR products are deposited on 0.8% agarose gel. Clones 1, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 17, 18, 19, 21, 23 and 24 have the right profile, an insert-vector fragment of 1100 pb. Wells 2 and 11 show nothing so they probably did not integrate the ligation products. Wells 10, 16, 20 and 22 seem to have incorporated the aspecific band obtained after PCR on the synthetic gene.
Electrophoresis photography following deposits on agarose gel 0.8% of colony PCR products.
The migration was performed at 100 volts for 30 minutes in TAE 1X. The marker used during the migration is the NEB 1 kb Plus Ladder. Lane 1 to 10 corresponds to colony PCR performed on TesA/pSB1A3 ligation, lane 11 to 24 corresponds to colony PCR performed on TesA/pSB1A3.
Clones with the right profile are returned to liquid culture and minipreparations are performed. In order to avoid any risk of point mutation, sequencing is performed with the plasmid primer.
After sequencing, induction is performed on the thermocompetent E. coli bacteria JM109. The objective is to verify if the cloned gene leads to the production of a protein. The expected size of the TesA protein is 20 kDa.
Expression of TesA protein
After sequencing, the induction of the pBAD promotor is performed with arabinose on the thermocompetent bacteria JM109. The objective is to verify if the cloned gene leads to the production of the correct protein. The expected size of the TesA protein is 20 kDa. A little expression of the TesA protein is observed at the correct size when the pBAD promoter is induced with arabinose. The gene has therefore been correctly cloned into the strain and the protein is produced.
SDS Page 8% photography following the induction of JM109 with arabinose after 4 hours of culture.
Coloring with coomassie blue. The lane 1 to 4 correspond to induced or non-induced cultures transformed with TesA 6His tag/pSB1A3. Lane 6 to 8 correspond to induced or non-induced cultures transformed with ADR C-ter/pSB1A3. NI : Not induced; I: Induced; M: Marker
The last step consist in evaluating the enzymatic activity of the protein in vitro.
Activity
The last step consists in evaluating the enzymatic activity of the TesA protein in vitro. An acid value (AV) was performed after a fatty acid extraction with hexane on bacterial culture media. Two conditions were used as our pBAD promoter is inducible by arabinose: induced and non induced samples. The volume of potassium hydroxide (KOH) in milliliters to neutralize the free acidity in our samples was measured thanks to an indicator dye: the phenolphthalein. The acid value, which represent here the quantity of KOH needed to neutralize the free fatty acids existent in the sample, was then calculated. It exhibited a difference between the induced sample and the non-one. The non-induced sample presented a smaller AV (33.36 mg) compared with the induced one (123.19 mg) which confirms that the induction leaded to an active TesA which increased the production of free fatty acids in the media.
Acidic value of TesA induced and non-induced fatty acids extracted samples.
User Reviews
UNIQ02331a9b399fa477-partinfo-00000000-QINU UNIQ02331a9b399fa477-partinfo-00000001-QINU